Cluster chemistry

LXXIII *. Preparation and X-ray structure of the hexanuclear cobalt-ruthenium cluster, $\mathrm{CoRu}_{5}\left(\mu_{4}-\mathrm{PPh}\right)$ $\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{12}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$

Chris J. Adams, Michael I. Bruce
Jordan Laboratories, Department of Physical \& Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001 (Australia)

Brian W. Skelton and Allan H. White
School of Chemistry, University of Western Australia, Nedlands, Western Australia 6009 (Australia)
(Received June 7th, 1991)

Abstract

One of the products from the reaction between $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ and $\mathrm{Co}(\mathrm{CO})_{2}(\eta$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)$ is the heterometallic CoR_{5} cluster, $\mathrm{CoRu}_{5}\left(\mu_{4}-\mathrm{PPh}\right)\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{12}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. The Ru_{5} core has an irregular envelope conformation, one edge of which is bridged by PPh_{2}; the $\mathbf{C o}$ is attached to three Ru atoms of the Ru_{4} rhombus, the other side of which is capped by PPh . A $\mathrm{C}_{2} \mathrm{Ph}$ ligand, formed by extrusion of PPh to the cluster, bridges the flap of the envelope and the Co atom, and also interacts with three Ru atoms.

Introduction

The pentanuclear ruthenium complex $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ (1) has given much interesting chemistry from its reactions with organic substrates [2]. We have now commenced a study of the formation of medium and high nuclearity homo- and hetero-nuclear clusters by addition of other transition metal complexes to the open skeleton present in $\mathbf{1}$. This paper reports the synthesis of a hexanuclear CoRu_{5} cluster from the reaction between 1 and $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$.

Results and discussion

The reaction between 1 and $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ was carricd out in toluenc at $90^{\circ} \mathrm{C}$ for 3 d . Several products were separated by preparative TLC, but only one

[^0]Table 1
Selected bond lengths (\AA) for 2

$R u(1)-\mathrm{Ru}(2)$	$2.872(1)$	$\mathrm{Ru}(3)-\mathrm{P}(1)$	$2.371(2)$
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.812(1)$	$\mathrm{Ru}(4)-\mathrm{P}(1)$	$2.379(2)$
$\mathrm{Ru}(1)-\mathrm{Ru}(5)$	$3.027(1)$	$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.365(2)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.899(1)$	$\mathrm{Ru}(4)-\mathrm{P}(2)$	$2.254(2)$
$\mathrm{Ru}(2)-\mathrm{Ru}(5)$	$2.661(1)$	$\mathrm{Ru}(1) \cdots \mathrm{C}(1)$	$3.190(6)$
$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$2.8718(9)$	$\mathrm{Ru}(1)-\mathrm{C}(2)$	$2.283(5)$
$\mathrm{Ru}(1)-\mathrm{Co}$	$2.697(1)$	$\mathrm{Ru}(2)-\mathrm{C}(1)$	$2.253(7)$
$\mathrm{Ru}(3)-\mathrm{Co}$	$2.691(1)$	$\mathrm{Ru}(2)-\mathrm{C}(2)$	$2.157(7)$
$\mathrm{Ru}(4)-\mathrm{Co}$	$2.657(1)$	$\mathrm{Ru}(5)-\mathrm{C}(1)$	$2.067(6)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.527(2)$	$\mathrm{Co}-\mathrm{C}(2)$	$1.819(6)$
$\mathrm{Ru}(2)-\mathrm{P}(1)$	$2.278(2)$		
$\mathrm{Co}-\mathrm{C}(\mathrm{cp})$		range $2.042(9)-2.12(1)$, av. $2.09_{2} \AA$	
$\mathrm{Ru}-\mathrm{CO}$		range $1.880-1.969(8)$, av. $1.89_{7} \AA$	
$\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	range $1.805-1.831(5)$, av. $1.81_{6} \dot{\mathrm{~A}}$		
$\mathrm{C}-\mathrm{O}$			

has given black crystals suitable for an X-ray study, two forms being obtained. The first, from dichloromethane/isopentane, was solvated and yielded inferior material with a resulting determination of poor precision. A second, unsolvated, form was then obtained from dichloromethane/methanol as nicely formed crystals, resulting in a superior study. Both are recorded, the second in more detail and forming the basis for the parameters of Table 1, Fig. 1 and the Discussion. The complex was thus characterised as $\mathrm{CoRu}_{5}\left(\mu_{4}-\mathrm{PPh}\right)\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{12}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (2). Figure 1 shows two plots of a molecule of 2 and selected bond lengths are collected in Table 1.

The structure of $\mathbf{2}$ is based on an irregular square pyramidal PRu_{4} core, one edge of which is bridged by the PPh_{2} group, and an adjacent edge by an $\mathrm{Ru}(\mathrm{CO})_{3}$ group. The Co atom is attached to three Ru atoms of the Ru_{4} face to give an irregular CoRu_{5} polyhedron, best described as an edge-bridged CoRu_{4} square-pyramid lacking one $\mathrm{Co}(\mathrm{ap})-\mathrm{Ru}$ (bas) bond. An alternative description is of a metalla-alkyne, $\mathrm{PhC}_{2} \mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, spanning the Ru_{5} array. This description also emphasises the relationship between 2 and an isomer of $1, \mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mu_{4}-\mathrm{PPh}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$

(1)

(2)

(3)
(3) [3], which has been isolated from reactions of 1 with oxirane or $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$. Although the isolobal nature of the $\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{Fe}(\mathrm{CO})_{3}$ groups might suggest that 2 might have been formed from 3 and $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, a control experiment with these two reactants showed that no 2 was formed under similar reaction conditions.

The $R u_{5}$ skeleton is related to those found in 3 [3] and in the μ_{5}-benzyne complex, $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mu_{4}-\mathrm{PPh}\right)(\mathrm{CO})_{13}$ [4], which have been compared to 'stepsites' on metal surfaces. The internal dihedrals $R u(1)-R u(2)-R u(5) / R u(1)-R u(2)-$ $\mathrm{Ru}(4)$ (the flap angle of the envelope), $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(4) / \mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$ (relating to the non-planarity of the Ru_{4} rhombus) and $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ $\mathrm{Ru}(3) / \mathrm{Co}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$ are $162.23(4), 146.97(5)$ and $128.41(5)^{\circ}$, respectively.

Of the $\mathrm{Ru}-\mathrm{Ru}$ distances, which range between $2.661(1)$ and $3.027(1) \AA$, the shortest is that bridged by $C(1)$ of the alkyne and the longest is $R u(1)-R u(5)$, which supports the C_{2} unit of the alkyne. There is thus a considerable distortion of the Ru_{3} triangle to which the $2 \sigma, \eta^{2}-\mathrm{CC}$ unit of the alkyne is attached. For comparison, the $\mathrm{Ru}-\mathrm{Ru}$ separations in $\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{C}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{CO})_{9}$ are all 2.795(3) \AA [5] and those in $\mathrm{Ru}_{3}\left\{\mu_{3}-\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right\}(\mu$-dppm $)(\mu-\mathrm{CO})(\mathrm{CO})_{7}$ lie between $2.717(1)$ and $2.817(1) \AA$ [6]. The Co-Ru distances are between $2.657(1)$ and 2.697(1) \AA. No structurally characterised $\mathrm{Co}-\mathrm{Ru}$ clusters containing $\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ groups are known to us, but $\mathrm{Co}-\mathrm{Ru}$ distances in otherwise related complexes include 2.573(1) and 2.655(1) \AA in $\mathrm{CO}_{2} \mathrm{Ru}\left(\mu_{3}-\mathrm{CPh}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ [7], 2.618(1) and 2.628(1) \AA in $\mathrm{Co}_{2} \mathrm{Ru}\left(\mu_{3}-\mathrm{CCH}^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{CO})_{9}$ [8], 2.699(1) \AA (parallel to the CC bond) in $\mathrm{Co}_{2} \mathrm{Ru}\left(\mu_{3}-\right.$ $\left.\mathrm{HC}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}[8], 2.703(3) \AA$ in $\mathrm{Co}_{2} \mathrm{Ru}_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{9}$ [9] and 2.716(5) and 2.723(2) \AA in $\mathrm{Co}_{2} \mathrm{Ru}(\mu-\mathrm{CO})(\mathrm{CO}) 10$ [9]. In a series of pseudo-octahedral $\mathrm{C}_{2} \mathrm{CO}_{4-n} \mathrm{Ru}_{n}$ clusters ($n=0-3$) containing μ_{4}-alkynes, non-hinge $\mathrm{Co}-\mathrm{Ru}$ separations range between 2.481(2) and 2.614(1) \AA; the only hinge Co-Ru distance was longer, at $2.725(2) \AA[10]$.

The $\mu_{4}-\mathrm{PPh}$ group is strongly bonded to $\mathrm{Ru}(2), \mathrm{Ru}(3)$ and $\mathrm{Ru}(4)[2.278-2.371(2)$ $\AA]$ but only weakly to $\operatorname{Ru}(1)[2.527(2) \AA]$. The $R u(1)-R u(4)$ vector is asymmetrically bridged by the $\mu-\mathrm{PPh}_{2}$ group [2.365, $2.254(2) \AA$ A. The alkyne caps the $\mathrm{Ru}(1)-\mathrm{Ru}(2)-$ $\mathrm{Ru}(5)$ face in an asymmetric $\mu_{3}-\eta^{2}-\|$ mode, with shortest interactions $\mathrm{Ru}(2)-\mathrm{C}(2)$ [2.157(7) \AA] and $\mathrm{Ru}(5)-\mathrm{C}(1)$ [2.067(7) \AA], and weaker bonds to the other Ru atoms $\left[\mathrm{Ru}(1)-\mathrm{C}(2) 2.283(5), \mathrm{Ru}(2)-\mathrm{C}(1) 2.253(7) \AA\right.$. A . The $\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ group is also attached to $\mathrm{C}(2)[\mathrm{CO}-\mathrm{C}(2) 1.819(6) \AA]$. The $\mathrm{C}(1)-\mathrm{C}(2)$ distance is $1.373(7) \AA$.

The twelve CO groups are distributed two each to $\mathrm{Ru}(1), \operatorname{Ru}(2)$ and $\mathrm{Ru}(4)$, and three to each of $\mathrm{Ru}(3)$ and $\mathrm{Ru}(5)$. All $\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ angles are $>175^{\circ}$ with the exception of $\mathrm{Ru}(3)-\mathrm{C}(33)-\mathrm{O}(33)$ [168.5(6)'], which is incipiently semi-bridging the $R u(3)-R u(4)$ vector.

Normal electron book-keeping suggests that $\mathrm{Ru}(1)$ is electron-rich and $\mathrm{Ru}(5)$ is electron-poor, although the cluster as a whole is electron-precise. The long $\operatorname{Ru}(1)-$ $R u(5)$ and short $\operatorname{Ru}(2)-R u(5)$ distances suggest that some electron delocalisation occurs in this unit, with perhaps the best description of the former being an $\mathbf{R u} \rightarrow \mathbf{R u}$ donor bond. The structure can be interpreted as resulting from a flexible Ru_{5} skeleton accommodating the steric and electronic requirements of the PPh and

Fig. 1. Computer-generated plots of a molecule of $\mathrm{CoRu}_{5}\left(\mu_{4}-\mathrm{PPh}\right)\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{12}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (2): (a) viewed from the side of the $R u_{4}$ rhombus and (b) viewed approximately perpendicular to the $R u_{4}$ rhombus, showing atom numbering scheme. Non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of $0.1 \AA$.

Fig. 1 (continued).
$\mathrm{PhC}_{2} \mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ groups. This is consistent with the well-known relative weakness of $\mathbf{M}-\mathrm{M}$ bonds in metal cluster complexes [11].

The spectroscopic properties were determined: the IR spectrum contains only terminal $\nu(\mathrm{CO})$ absorptions and the ${ }^{1} \mathrm{H}$ NMR spectrum contains a singlet at $\delta 4.49$ for the $\mathrm{C}_{5} \mathrm{H}_{5}$ group as well as an extended series of multiplets between $\delta 6.0$ and 8.3 for the phenyl protons. The ${ }^{13} \mathrm{C}$ resonances are found at $\delta 85.8\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$, between δ 126-134 (Ph), between 137-147 (ipso C) and a series of signals between δ 188-212 can be assigned to the various CO groups. There are also two resonances, at $\delta 148.9$ and 240.5 , which we assign to C_{β} and C_{α}, respectively; the latter shows an unresolved coupling, probably to P. The FAB mass spectrum contained a molecular ion at $m / 21360$, which fragmented by loss of the twelve $C O$ ligands and a phenyl group from the carbonyl-free ion.

Complex 2 is the major product from the reaction between 1 and $\operatorname{Co}(\mathrm{CO})_{2}(\eta-$

Table 2
Non-hydrogen atomic coordinates for solvated and unsolvated forms of 2

Atom	Solvated form			Unsolvated form		
	\boldsymbol{x}	y	z	\boldsymbol{x}	y	z
$\mathrm{Ru}(1)$	0.7183(2)	0.6022(3)	0.6884(3)	0.80518(3)	0.41146(3)	0.30177(5)
Ru(2)	$0.8124(2)$	$0.6137(3)$	0.8540(3)	0.81231(3)	0.17319(3)	$0.18925(5)$
Ru(3)	0.7592(2)	0.5074(3)	0.8749(3)	$0.63777(3)$	0.19064(4)	0.09940 (5)
Ru(4)	0.6538(2)	0.5392(3)	0.7295(3)	0.62290 (3)	0.40105(3)	0.28880(5)
$\mathrm{Ru}(5)$	0.8339(2)	0.6286(3)	$0.7424(3)$	0.95899(3)	$0.29253(4)$	$0.19022(5)$
$\mathrm{Co}(1)$	0.7289(4)	0.4776(4)	0.7235(5)	0.70726(5)	0.38827(6)	$0.09960(8)$
C(11)	0.732(3)	0.576(4)	0.623(5)	0.8812(4)	0.5152(5)	0.2697(7)
O(11)	0.726(1)	0.568(2)	0.553(2)	0.9227(3)	0.5828(4)	0.2506(6)
$\mathrm{C}(12)$	0.708(2)	0.682(2)	0.668(2)	0.8687(4)	0.4211(4)	0.4460(6)
$\mathrm{C}(12)$	0.703(1)	0.738(2)	0.651(2)	0.9072(3)	0.4267(4)	0.5315(5)
C(21)	0.821(2)	0.692(2)	0.865(3)	0.8778(4)	0.1365(5)	0.3065(7)
$\mathrm{O}(21)$	0.829(2)	0.705(2)	0.880(2)	0.9150(3)	0.1120(4)	0.3764(5)
C(22)	0.872(2)	0.608(3)	0.976(3)	0.7861(4)	0.0182(5)	0.1061(7)
O(22)	0.898(2)	0.602(2)	1.039(3)	0.7681 (3)	-0.0751(3)	0.0586(5)
C(31)	$0.801(2)$	0.440 (2)	0.912(2)	0.6436(4)	0.1130(6)	-0.0686(7)
O(31)	0.836(2)	$0.394(2)$	0.938(2)	0.6428(4)	$0.0637(5)$	$-0.1656(5)$
C(32)	0.783(2)	0.535(3)	0.980 (3)	0.5905(4)	0.0579(5)	0.1166(7)
O(32)	0.797(2)	0.554(2)	1.044(3)	0.5599(3)	-0.0212(4)	$0.1266(6)$
C(33)	0.718(2)	0.451(3)	0.873(3)	0.5296(4)	0.2457(6)	0.0735(8)
O(33)	0.681(2)	0.417(2)	0.863(2)	0.4633(3)	0.2624(5)	0.0416(6)
C(41)	0.613(2)	0.472(3)	0.703(3)	0.5297(4)	$0.4694(5)$	0.2418(7)
O(41)	0.579(2)	0.427(2)	0.689(2)	0.4708(3)	$0.5080(4)$	0.2163(5)
C(42)	0.601(2)	0.582(3)	0.741(3)	0.5587(4)	0.3933(5)	0.4149(6)
O(42)	0.570(2)	$0.612(2)$	0.746(2)	0.5199(3)	0.3892(4)	0.4902(5)
C(51)	0.840(3)	0.608(3)	$0.656(4)$	1.0277(4)	0.3997(6)	0.1521(8)
O(51)	0.855(2)	0.583(2)	0.617(3)	1.0690 (4)	0.4607(5)	0.1250(8)
C(52)	0.830(2)	0.708(3)	0.719(3)	1.0280(4)	0.3075(5)	0.3390 (7)
O(52)	0.822(2)	0.764(2)	0.704(3)	1.0689(3)	0.3097(5)	0.4195(6)
C(53)	0.893(5)	0.641(7)	0.795(8)	1.0228(4)	0.1799(6)	$0.1017(8)$
O(53)	0.949(2)	0.642(3)	0.853(3)	1.0600 (3)	0.1111(5)	0.0405(7)
$\mathrm{P}(1)$	$0.7260(7)$	$0.6111(8)$	0.8240(9)	0.70182(8)	$0.2502(1)$	$0.2987(1)$
C(111)	0.708(2)	0.670(2)	0.864(2)	$0.6680(4)$	0.2008(4)	0.4133(6)
C(112)	0.686(2)	0.655(3)	0.911(3)	0.5824(4)	0.1596(5)	0.4101(6)
C(113)	0.667(3)	0.698(3)	0.939(4)	0.5545(5)	$0.1234(6)$	0.4974(8)
C(114)	0.669(2)	0.757(3)	0.927(4)	0.6111(6)	0.1249(7)	0.5880(8)
C(115)	0.687(3)	0.774(3)	0.878(4)	0.6969(5)	0.1642(6)	0.5942(7)
C(116)	0.703(2)	$0.728(2)$	0.848(3)	0.7250(4)	$0.2019(5)$	-0.5082(7)
C(1)	0.833(2)	0.550(2)	0.783(3)	0.8596(3)	0.2426(4)	0.0543(6)
C(2)	0.784(2)	0.529(3)	0.775(3)	0.7893(3)	0.2941(4)	0.1061(5)
C(121)	0.882(3)	0.503(4)	0.827(4)	0.8725(4)	0.1858(5)	-0.0735(6)
C(122)	$0.911(3)$	0.479(4)	0.916(5)	0.8499(5)	0.0719(6)	-0.1390(8)
C(123)	0.955(3)	0.432(4)	0.944(5)	0.8689(5)	0.0219(6)	-0.2539(8)
C(124)	0.958(4)	0.420(4)	0.883(5)	0.9084(5)	0.0809(7)	-0.3125(8)
C(125)	0.938(5)	0.432(6)	0.806(7)	0.9309(5)	0.1941(7)	-0.2532(8)
$\mathrm{C}(126)$	0.891(3)	0.479(4)	0.788(4)	0.9132(5)	0.2446(6)	-0.1354(7)
$\mathrm{P}(2)$	0.6248(8)	0.5799(9)	0.608(1)	0.71388(9)	0.5528(1)	0.3959(2)
C(211)	0.577(2)	0.640(3)	0.576(3)	0.7172(3)	0.6019(5)	0.5575(6)
C(212)	0.519(3)	0.651(3)	0.487(4)	0.7146(5)	0.7158(5)	0.6296(7)
C(213)	0.494(3)	0.709(4)	0.475(4)	0.7171 (6)	0.7456(6)	0.7509(8)
C(214)	0.503(5)	0.746(6)	0.547(8)	0.7222(5)	0.6722(7)	0.8046(7)
C(215)	0.550(4)	0.743(4)	0.605(5)	0.7243(5)	0.5594(6)	0.7391(7)

Table 2 (continued)

Atom	Solvated form			Unsolvated form		
	\boldsymbol{x}	y	2	\boldsymbol{x}	y	z
C(216)	0.585(3)	0.693(3)	0.622(4)	0.7216(4)	0.5259(5)	0.6157(7)
C(221)	0.597(2)	0.534(3)	0.506(3)	0.7150(4)	0.6856(4)	0.3705(6)
C(222)	0.563(2)	0.480(3)	0.501(3)	0.6392(4)	0.7240(5)	0.3401(7)
C(223)	0.545(3)	0.440(3)	0.423(4)	0.6408(5)	0.8233(6)	0.3197(8)
C(224)	0.550(2)	0.464(3)	0.369(3)	0.7163(6)	0.8858(5)	0.3320 (8)
C(225)	0.575(2)	0.514(3)	0.379(3)	0.7934(5)	0.8522(6)	0.3651(9)
C(226)	0.600(3)	0.555(3)	0.445(4)	0.7931(4)	0.7515(5)	0.3846(7)
C(101)	0.769(2)	0.395(3)	0.738(3)	$0.7096(6)$	0.3759(6)	-0.0741(7)
C(102)	0.719(2)	0.381(3)	0.728(3)	0.6285(6)	0.4027(8)	-0.0424(9)
C(103)	0.678(3)	0.400(3)	0.659(4)	$0.6380(5)$	$0.5060(8)$	0.0519(8)
C(104)	0.694(2)	0.429(2)	$0.609(3)$	$0.7248(6)$	0.5436(6)	0.0772(8)
C(105)	0.757(3)	0.435(4)	0.669(4)	0.7703(5)	0.4634(7)	-0.0038(8)
0	0.525(6)	0.731(6)	0.283(9)			

$\mathrm{C}_{5} \mathrm{H}_{5}$) and speculations on the mode of its formation are of limited value. Possible reactions include:
(i) transfer of Ph to the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ (or C_{2}-if (ii) precedes) ligand from the μ - PPh_{2} group in 1, thereby generating the $\mu_{4}-\mathrm{PPh}$ group; this has precedent in the 'isomerisation' of 1 to 3 , and more closely in the formation of $\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{PPh}\right)\left(\mu_{4^{-}}\right.$ $\left.\mathrm{PhC}_{2} \mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}$ [12];
(ii) cleavage of the $\mathrm{Ph}_{2} \mathrm{P}-\mathrm{CC}$ bond, with migration of the PPh_{2} group to an Ru-Ru edge;
(iii) combination of the $\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ fragment with the C_{2} or PhC_{2} fragment and attachment of the Co to three Ru atoms of the cluster.

Reactions (i) and (ii) can be summarised:
$\mathrm{Ph}_{2} \mathrm{P}-\mathrm{CC}+\mathrm{Ph}-\mathrm{PPh} \rightarrow \mathrm{Ph}_{2} \mathrm{P}+\mathrm{CCPh}+\mathrm{PPh}$

Conclusions

A novel heterometallic CoRu_{5} cluster has been isolated from the reaction between 1 and $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, in the formation of which formal elimination of PPh from the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ group to the cluster has occurred. The remaining $\mathrm{C}_{2} \mathrm{Ph}$ fragment combines with a $\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ moiety which also bonds to the rhomboidal Ru_{4} portion of the cluster.

Experimental

General. General reaction conditions were similar to those described previously [13]. Complex 1 was made as described previously [14]; $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ was obtained from Strem (Newburyport, MA) and used as received.

Reaction of $R u_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ with $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$.
A solution of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}(120 \mathrm{mg}, 0.095 \mathrm{mmol})$ and $\mathrm{Co}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}(300 \mathrm{mg}, 1.67 \mathrm{mmol})$ in toluene $\left(10 \mathrm{~cm}^{3}\right)$ was heated in a Carius tube at
$90^{\circ} \mathrm{C}$ for 3 d . The solvent was removed and the residue purified by preparative TLC (light petroleum/acetone 10/3) to yield several coloured bands. Only one product ($R_{\mathrm{f}} 0.7$) gave black crystals suitable for a single crystal X-ray study, identified as $\mathrm{CoRu}_{5}\left(\mu_{4}-\mathrm{PPh}\right)\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{12}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(3)(41 \mathrm{mg}, 32 \%)$, m.p. $197-202^{\circ} \mathrm{C}$ (dec.). Found: C, 38.55; H, 2.12\%; $M^{+}, 1360 . \mathrm{C}_{45} \mathrm{CoH}_{25} \mathrm{O}_{14} \mathrm{P}_{2} \mathrm{Ru}_{5}$ calc.: C, 38.17; H, 1.78\%; M, 1360. IR: $\nu(\mathrm{CO})$ (cyclohexane) 2073s, 2050s, 2015vs, 2003vs, 1995(sh), $1980 \mathrm{~m}, 1972 \mathrm{~m}, 1952 \mathrm{~m}, 1944 \mathrm{~m} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 4.49$ (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$); 6.05-8.23 (extended $\mathrm{m}, 20 \mathrm{H}, \mathrm{Ph}$). ${ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 85.80$ (s, $\mathrm{C}_{5} \mathrm{H}_{5}$); 126.3-134.0 (m, Ph); 137.26-146.77 (m, ipso C); 148.88 (s, C_{β}); 188.4, $189.05,193.95,194.4,195.45,200.3,200.5,206.65,207.05,211.75$ (CO); 240.5 (m, C ${ }_{\alpha}$). FAB MS: 1360, M^{+}; 1332-1024, $[M-n \mathrm{CO}]^{+}(n=1-12) ; 947$, $[M-$ $12 \mathrm{CO}-\mathrm{Ph}]^{+}$.

Crystallography

Unique data sets were measured at ca 295 K within the specified $2 \theta_{\text {max }}$ limits using an Enraf-Nonius CAD4 diffractometer ($2 \theta / \theta$ scan mode; monochromatic Mo- K_{α} radiation, $\lambda 0.7107_{3} \AA$); N independent reflections were obtained, N_{o} with $I>3 \boldsymbol{\sigma}(I)$ being considered 'observed' and used in the full matrix least squares refinement after gaussian absorption correction (unsolvated form). Anisotropic thermal parameters were refined for the non-hydrogen atoms; $\left(x, y, z, U_{\text {iso }}\right)_{\mathrm{H}}$ were included constrained at estimated values. Conventional residuals R, R^{\prime} on $|F|$ are quoted, statistical weights derivative of $\sigma^{2}(I)=\sigma^{2}\left(I_{\text {diff }}\right)+0.0004 \sigma^{4}\left(I_{\text {diff }}\right)$ being used. Computation used the XTAL 2.6 program system [15] implemented by S.R. Hall; neutral atom complex scattering factors were employed. Pertinent results are given in Fig. 1 and Tables 1 and 2. Structure factor amplitudes, thermal and hydrogen atom parameters and full non-hydrogen geometries are available from the authors.

Crystal and refinement data

2, unsolvated form. $\mathrm{CoRu}_{5}\left(\mu_{4}-\mathrm{PPh}\right)\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{12}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \equiv$ $\mathrm{C}_{43} \mathrm{CoH}_{25} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Ru}_{5}, M=1359.9$. Triclinic, space group $P \overline{1}$, (No. 2), $a=15.495(7)$, $b=12.803(4), c=12.039(5) \AA, \alpha=110.99(3), \beta=93.64(4), \gamma=93.32(3)^{\circ}, U=2217$ $\dot{A}^{3} . D_{\mathrm{c}}(Z=2)=2.04 \mathrm{~g} \mathrm{~cm}^{-3} . F(000)=1312 . \mu_{\mathrm{Mo}}=20.5 \mathrm{~cm}^{-1}$; specimen: $0.28 \times$ $0.19 \times 0.11 \mathrm{~mm} ; A_{\text {min,max }}^{\star}=1.29,1.51 .2 \theta_{\text {max }}=50^{\circ}, N=7790, N_{\mathrm{o}}=6697 ; R=$ $0.036, R^{\prime}=0.043$.

2, solvated form. $\mathrm{CoRu}_{5}\left(\mu_{4}-\mathrm{PPh}\right)\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{12}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \equiv$ $\mathrm{C}_{43} \mathrm{CoH}_{25} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Ru}_{5}, M=1359.9$. Monoclinic, space group $C 2 / c$, (No. 15), $a=$ 29.697(13), $b=21.202(7), c=19.874(14) \AA, \beta=124.88(4)^{\circ}, U=10265 \AA^{3} . D_{c}(Z=$ $8)=1.76 \mathrm{~g} \mathrm{~cm}^{-3} . F(000)=5248 . \mu_{\mathrm{Mo}}=17.0 \mathrm{~cm}^{-1}$; specimen: flake, $0.05 \times 0.15 \times$ 0.15 mm ; (no correction). $2 \theta_{\text {max }}=40^{\circ}, N=4515, N_{\mathrm{o}}=1644 ; R=0.097, R^{\prime}=0.097$.

Abnormal features / variations in procedure. Two forms designated 'solvated' and 'unsolvated' have been recognised and their structures determined. Determination of the 'unsolvated' form was straight-forward. For the 'solvated' form, determined first, the data were of poor quality and limited extent, permitting anisotropic thermal parameter refinement for the metal atoms only; the isotropic form was used for the remaining non-hydrogen atoms. The complex molecule thus defined does not differ non-trivially from that of the 'unsolvated' form. A number of difference map
residues were identified for the 'solvated' form; the only one of any substance was modelled as half-weighted oxygen. Clearly, however, it could be almost anything; the disordered solvent component appears to be considerable, although diffusely distributed - note the relative molecular volumes of the two forms- 1283 cf .1108 \AA^{3}.

Acknowledgements

We thank the Australian Research Council for financial support and Johnson Matthey Technology Centre for a generous loan of $\mathrm{RuCl}_{3} \cdot \boldsymbol{n} \mathbf{H}_{2} \mathrm{O}$.

References

1 Part LXXII: C.J. Adams, M.I. Bruce, B.W. Skelton and A.H. White, Inorg. Chem., submitted.
2 M.I. Bruce, J. Organomet. Chem., 394 (1990) 365; 400 (1990) 321.
3 C.J. Adams, M.I. Bruce, B.W. Skelton and A.H. White, J. Organomet. Chem., 420 (1991) 87.
4 S.A.R. Knox, B.R. Lloyd, D.A.V. Morton, S.M. Nicholls, A.G. Orpen, J.M. Viñas, M. Weber and G.K. Williams, J. Organomet. Chem., 394 (1990) 385.

5 M. Cati, G. Gervasio and S.A. Mason, J. Chem. Soc., Dalton Trans., (1977) 2260.
6 M.I. Bruce, P.A. Humphrey, H. Miyamae and A.H. White, J. Otganomet. Chem., 417 (1991) 431.
7 W. Bernhardt and H. Vahrenkamp, J. Organomet. Chem., 383 (1990) 357.
8 E. Roland, W. Bernhardt and H. Vahrenkamp, Chem. Ber., 118 (1985) 2858.
9 E. Roland and H. Vahrenkamp, Chem. Ber., 118 (1985) 1133.
10 O. Benali-Baitich, J.-C. Daran and Y. Jeannin, J. Organomet. Chem., 344 (1988) 393.
11 C.E. Housecroft, M.E. O'Neill, K. Wade and B. Smith, J. Organomet. Chem., 213 (1981) 35.
12 (a) J.-C. Daran, Y. Jeannin and O. Kristiansson, Organometallics, 4 (1985) 1882; (b) M.I. Bruce, M.J. Liddell and E.R.T. Tiekink, J. Organomet. Chem., 391 (1990) 81.
13 M.I. Bruce, M.J. Liddell, M.L. Williams and B.K. Nicholson, Organometallics, 9 (1990) 2904.
14 M.I. Bruce, M.L. Williams, J.M. Patrick and A.H. White, J. Chem. Soc., Dalton Trans., (1985) 1229.
15 S.R. Hall and J.M. Stewart (Eds.), xtal User's Manual, Version 2.6, Universities of Western Australia and Maryland, 1989.

[^0]: * For Part LXXII, see ref. 1.

